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SUMMARY 

Previous three-dimensional simulations of the lid-driven cavity flow have reproduced only the most general 
features of the flow. Improvements to a finite difference code, REBUFFS, have made possible the first com- 
pletely successful simulation of the three-dimensional lid-driven cavity flow. The principal improvement 
to the code was the incorporation of a modified QUICK scheme, a higher-order upwind finite difference 
formulation. Results for a cavity flow at a Reynolds number of 3200 have reproduced experimentally observed 
Taylor-Gortler-like vortices and other three-dimensional effects heretofore not simulated. Experimental 
results obtained from a unique experimental cavity facility validate the calculated results. 
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INTRODUCTION 

The numerical simulation of recirculating flows is of critical interest to engineers simply because 
of the prevalence of this flow type in engineering applications. From a numerical viewpoint, 
recirculating flows such as the lid-driven cavity flow can serve as ideal prototype non-linear 
problems for testing the proper operation of fluid dynamic codes, in both two and three dimen- 
sions. The lid-driven cavity’s geometric simplicity and well-defined flow structures in two 
dimensions and at low Reynolds numbers have allowed for comparative analysis of several 
numerical techniques. In general, good agreement exists among these low Reynolds number (i.e. 
Re < 400), two-dimensional solutions. 

The three-dimensional lid-driven cavity flow presents new and possibly unforeseen problems 
to the numericist. These problems result from significant fluid motions in the third axial direction 
and a very complex flow field at even low Reynolds numbers.”’ The previous three-dimensional 
simulations have reproduced only the most general features of the flow. This fact was highlighted 
by Koseff et aL3 by whom experiment and simulation were compared. They obtained a complete 
description of the three-dimensional circulation structure in the lid-driven cavity by flow visualiza- 
tion techniques. These experimental results where then compared to computed results generated 
by two different numerical codes, one employing finite differences and the other finite elements. 
Resolution of only the dominant primary circulation cell and corner vortices was obtained, and 
both codes failed to resolve the experimentally observed Taylor-Gortler-like (TGL) longitudinal 
vortices. 
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The failure of these two codes to resolve the pertinent laminar flow features can be traced to 
two points, (1) the accuracy of the numerical scheme, and (2) the grid point distribution or spacing. 
Working from this premise, we made improvements to the finite difference code used in Reference 
3 and used a finer grid. This current paper represents, therefore, a continuation of the work 
begun in Reference 3. The convective term differencing in REBUFFS has been improved from 
the first-order accurate HYBRID formulation to the third-order accurate QUICK formulation 
of L e ~ n a r d . ~  This improvement, coupled with a moderate resolution, non-uniform grid, allowed 
generation of the first successful numerical simulation of a three-dimensional laminar lid-driven 
cavity flow. 

The subsequent sections of this paper discuss, first, the experimental facility and flow visualiza- 
tion techniques. Secondly, a review of the components and features of and improvements to the 
code REBUFFS is reported. Thirdly, we present the experimental and simulated results for the 
case of an uniform density, three-dimensional lid-driven cavity flow at a Reynolds number (Re)  
of 3200. Finally, we conclude with a summary of the results and comments on future work. 

THE EXPERIMENTAL FACILITY 

The experimental facility has been described in detail in References 1 and 2, but for completeness 
a brief review of the facility is given here. The lid-driven cavity flow facility consists of two 
rectangular boxes (Figure I), the upper box containing the belt drive-system that provides the 

Figure 1. Schematic diagram of lid-driven cavity 
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Figure 2. Definitions for lid-driven cavity flow 

shear to the top of the lower box (the experimental cavity, region PQTKSMNR in Figure 1) where 
the recirculating flow occurs. The belt drive-system is composed of a variable speed motor capable 
of driving the 0.08mm thick copper belt at selected speeds between 7mm/s and 230mm/s 
(corresponding to a Re range of 1000 to 35,000). The experimental cavity portion of the facility has 
a width B of 150 mm, a depth D of 150 mm, and a lateral span L of 450 mm. This geometry results in 
a depth-to-width aspect ratio D/B of 1 : 1 and a span-to-width aspect ratio LIB of 3: 1 (Figure 2). For 
this cavity the Reynolds number is defined as Re = VB/v, where V is the belt speed and v is the 
average kinematic viscosity of the working fluid, water. 

The facility is constructed of 12.5 mm thick Plexiglas; this facilitates flow visualization. The 
motions of the fluid in this study were visualized by employing the rheoscopic liquid technique as 
described by Katsaros et The specific application of this technique to the lid-driven cavity flow 
facility is described by Rhee et aL2 Briefly, small concentrations of rheoscopic liquid, which consists 
of extremely small (6 pm x 30 pm x 007 pm) plate-like crystalline structures in a water substrate, 
are evenly distributed in the flow field. The tiny plates align themselves with the shear in the flow 
and when illuminated by a sheet of laser light they give an instantaneous picture of the flow in any 
plane. Time exposures of four to eight seconds with a Pentax 35 mm camera were used to obtain 
well defined pathlines in the flow field. 

THE FINITE DIFFERENCE METHOD 

The REBUFFS code 

The numerical results for this study were produced by a significantly modified version of 
LeQuere, Humphrey, and Sherman’s code REBUFFS (REcirculating Buoyant and Forced Flows 
S ~ l v e r ) . ~  REBUFFS represents an improvement of the TEACH-2E code developed at Imperial 
College, London by Gosman and Pun8 and whose fundamentals were laid out by Patankar and 
Spalding.’ The TEACH family of codes solve a weak form of the Navier-Stokes equations in 
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primitive variables via a weighted-residual method (i.e a control-volume formulation). The 
difference equations are derived according to the TEACH principles by volume integration of 
the partial differential equations on an elemental volume surrounding each node of the compu- 
tational grid. The control-volume method specifically used in REBUFFS requires the iterative 
solution of a set of finite difference equations within a given time step by a line-by-line procedure 
using a tridiagonal matrix solver. One iteration in REBUFFS consists of the sequential solution 
of the momentum equations (ec, v,  w )  and a pressure correction equation (a continuity equation). 
Details of this iterative scheme, which is known by the acronym SIMPLE are presented by 
Patankar. lo 

Details of the improvements to the original TEACH code, allowing for the development of 
REBUFFS, are presented by LeQuere et aL7 and were accomplished at the University of 
California, Berkeley. These improvements include changes to the time-dependent nature of the 
equations solved and allowance for a strong linkage between the energy and momentum equations 
through the density dependence on the fluid temperature. 

The version of REBUFFS discussed in Reference 3 used the first-order HYBRID scheme in 
the three-dimensional simulations reported there. HYBRID differencing employs second-order 
central differencing at nodes where the absolute value of the grid Peclet number is less than or 
equal to two, and first-order upwind differencing otherwise. Unfortunately, the HYBRID scheme 
generates tainted flow fields for moderate to large Re flows due to the spurious numerical diffusion 
introduced by first-order upwinding.' This numerical diffusion is undoubtedly responsible for 
the inadequate three-dimensional results from REBUFFS as presented in Reference 3. 

Han et ~ 1 . ' ~  recognized the weakness of the HYBRID scheme in REBUFFS and implemented 
Leonard's4,' QUICK scheme in two dimensions. QUICK is a third-order accurate upwind dif- 
ferencing scheme which possesses the stability of first-order upwinding but is free of its second- 
order numerical diffusion. Han et al.,' though, had difficulty in applying Leonard's formulation 
and were forced to reformulate and introduce a false-transient term to secure stable solutions. 
The apparent need for the false-transient term distressed Pollard and Siu.I3 Subsequently, Pollard 
and Siu developed reformulated versions of QUICK, namely QUICKE and QUICKER, which 
ensured stable two-dimensional solutions without the need for extra terms. 

A modified three-dimensional QUICK formulation 

The version of REBUFFS used in this study has also incorporated a QUICK scheme. 
This version of QUICK ensures that all of the coefficients of the terms in the finite difference 
expressions are positive and is similar in form to the development of Pollard and Siu.13 The 
violation of the condition of all positive (or negative) finite difference coefficients may generate 
physically unrealistic solutions or divergence of the iterative solution." 

In the control-volume formulation, fluxes across the control-volume faces must be computed. 

Figure 3(a). Grid point definitions for QUICK 



THREE-DIMENSIONAL FLOW IN A CAVITY 565 

These fluxes represent the integrated convection terms of the partial differential equations. The 
HYBRID scheme approximates the magnitude of these fluxes by either linearly interpolating 
the quantity specified at the node points bounding the control-volume face or by setting them 
equal to the value of the quantity at the node point upstream of the face. The QUICK scheme 
uses an upstream-weighted quadratic interpolation for these fluxes. As an example of the QUICK 
formulation used in this study, the one-dimensional flux interpolation equations for a quantity 
(P convected by a velocity field u on a uniform grid (refer to Figure 3(a)) are: 

For u > O  
(Pe  =$(6(Pi- (Pi+ 1 - ( P i -  1) + 34i+ 1 9  (1) 

source 

These equations are in essence composed of a linear interpolation plus a portion of the respective 
upstream-weighted second difference normal to the control-volume face.5 As signified in equations 
(1)-(4), some terms are incorporated in the source term of the finite difference equations. These 
additional source terms are necessary to ensure all positive finite difference coefficients and 
represent one of our most significant modifications to Leonard's4lS formulation. In general, the 
original source term in REBUFFS is comprised of all terms of the partial differential equation 
except the time dependent term and the convection-diffusion terms. All source terms are evaluated 
using the current value of the unknown (i.e. lagged one-step in the iterative solution method). 
This explicit formulation of the source term aids in maintaining the iterative stability of the entire 
numerical scheme. 

The QUICK scheme can be difficult to apply near boundaries and yet previous authors have 
not commented on their specific applications. REBUFFS uses a staggered grid that requires 
either one node point outside of or one node point coincident with the boundary of the flow 
domain." Figure 3(b) displays the situation at an upstream boundary condition where the grid 
point coincides with the boundary and (P, represents the first interior node point. 
When the velocity on the w face of the control-volume is negative (corresponding to equation 
(4)) then sufficient grid point information exists to evaluate the flux 4,. But, if the velocity 
is positive (corresponding to equation (2)) then we are unable to compute the magnitude of the 
flux because the grid point ( P t - 2  is not defined. A similar situation develops at a downstream 
boundary where, in this case, grid point (P ,+2  is not defined. An extrapolation is thus required. 
After extensive testing a second-order extrapolation was used to represent quantities such as 
(PL - or (P, + in the flux interpolation equations, namely ( P I  - = 24, - - 4,. Higher-order 
extrapolations produced downwind differences which created unstable solutions. First-order 

1 
I 
I 

Figure 3(b). Grid point definitions at boundary 
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extrapolation was numerically stable, but reduced the global accuracy of the algorithm. Thus, 
a second-order extrapolation is an optimized form for a REBUFFS-type formulation. 

In our version of the QUICK scheme the transverse curvature terms, Leonard’s CURVT terms, 
are neglected. Our preliminary tests indicate that elimination of these terms has negligible impact 
on the computed flow fields; this is confirmed by Leonard.14 Two consequences of this manipula- 
tion are that the convective-terms differencing operator is reduced to second-order accuracy, 
but the operator has been transformed from a three-dimensional one to a one-dimensional 
operator. This step eliminates the necessity of an unique formulation in corner boundary regions 
and simplifies the development of a non-uniform grid version of QUICK. 

Finally, our uniform grid version of QUICK was not cost-effective for flows dominated by 
solid boundaries. In order to resolve the flow near these boundaries and not waste grid points 
in the interior of the cavity a non-uniform grid version of QUICK was developed and used. 
The formulation has been simplified to a one-dimensional problem owing to the elimination of 
the CURVT terms, as discussed above. The development proceeds by determining the coefficients 
for a general one-dimensional quadratic interpolation equation, for unevenly spaced grid points, 
i.e. 4 = c1 + c2S + c,S2, where 5 is the local co-ordinate for a control volume. The general 
quadratic interpolation equation is then integrated over each control-volume face to generate 
the corresponding six one-dimensional flux interpolation equations for a non-uniform grid. 
Equations (1)-(4) become for a non-uniform grid: 

For u>O: 



THREE-DIMENSIONAL FLOW IN A CAVITY 567 

Each of these expressions locally satisfies our general one-dimensional quadratic polynomial. The 
source terms in equations (5) - (8) are implemented like those in equations (1)-(4). REBUFFS 
allows for a uniform or non-uniform grid by computing control-volume dimensions from input 
grid point co-ordinates. 

Several additional minor modifications to the original REBUFFS code of LeQuere et aL7 
have been made. These modifications include restructuring the code to a modular format, 
optimizing for operation on an IBM-3081 computer, and the ability to interface with graphic 
routines. 

Problem definition and execution information 

The three-dimensional cavity flow simulation presented below used a nonuniform grid 
of 32 x 32 x 45 for the half-cavity. Simulating the half-cavity flow only is valid and cost-effective, 
because the experimental results show a symmetric flow about the centre plane of the lateral 
span.” The numerical boundary condition imposed at the centre plane is that of a no-flux surface. 

The calculations were performed at the ISM Palo Alto Scientific Center (PASC) on an IBM- 
308 1 running under the VM operating system. Approximately 8 megabytes of core were required 
for this simulation. The time step size for the transient solution ranged from 0.02 s for the initial 
start-up phase to a maximum of 10.0s. The average number of iterations per 10.0s time step 
was 150. The implementation of the non-uniform QUICK scheme increased execution times by 
only 39 per cent above that of the original HYBRID formulation. 

A comparison of execution time with two other three-dimensional codes indicate that 
REBUFFS’ required cpu time is competitive. REBUFFS required approximately 0.8 ms per 
iteration-cell. The TURBIT-3 code, an explicit finite difference code,I6 consumes approximately 
0.3 ms per time step-cell when executing on an IBM-3033. The TEMPEST code,I7 also an explicit 
finite difference code based on TEACH-like principles, uses an estimated 0.5 ms per time step-cell 
on a CDC-7600. It is possible to convert these execution times to equivalent IBM-3081 cpu 
time.” This results in a TURBIT-3 estimate of about 0.3 ms per time step-cell and for TEMPEST 
about 1 ms per time step-cell. Naturally, these approximate cpu times are only general indicators 
of execution costs. 

COMPARISON OF EXPERIMENT AND SIMULATION 

The experimental results are for a Re of 3300 and reproduced from Reference 15. The computed 
results are at a time of 20min and for a Re of 3200. The simulation Re of 3200 was chosen to 
match the experiment when laser-Doppler velocity measurements were obtained (to be discussed 
later). The difference in Re between the visualization experiment and the velocity measurement 
experiment is due to the fluid temperature on the day of the particular experiment, but is of no 
consequence in this comparison. 

The computed fields are displayed in vector plots and particle track plots. The vector plots 
are normalized by the largest vector in the plane displayed. The particle tracks are generated 
from the 20 min instantaneous velocity fields which are assumed constant for the 5-8 s during 
which the particle tracks are computed. The depth-of-field for the particle track plots varies from 
2 to 4mm as it did in the experiment photographs. 

Figures 4 and 5 display the general flow structure within the cavity. This pattern is generated 
by the motion of the belt which drags adjacent fluid. Eventually this dragged fluid collides with 
the downstream vertical wall and is deflected downward. A secondary eddy is formed in the 
apex of the vertical and bottom boundaries as a result of frictional losses and stagnation pressure. 



Figure 5. Particle tracks for flow in plane 40mm from end-wall 
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The primary circulating fluid continues towards the upstream vertical wall, generating another 
secondary eddy in the upstream lower corner. The circulation loop is closed when the fluid is 
re-entrained by the lid. The experimentally observed spanwise variation in the flow field structures 
is reproduced by the simulated results. Corner eddy size i s  influenced by proximity to the end-wall 
and location of the TGL vortices. As one would expect the no-slip condition at the end-wall 
drains energy from the velocity field, modifying the location and size of eddy structures. 

Figure 6. Flow in plane 35 mm upstream of downstream wall 

Figure 7. Particle tracks for flow in plane 35 mm upstream of downstream wall 
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Figure 6 gives experimental results at a plane 35mm from the downstream wall, QTMS in 
Figure 2, which displays the presence of the corner vortex and four pairs of TGL vortices. The 
corresponding simulated plane is reproduced in Figures 7 and 8. The simulated field also possesses 
a corner vortex and four pairs of variable-sized TGL vortices. The numerical generation of the 
TGL vortices did not require a random perturbation of the velocity fields, but rather the presence 
of the end-wall is sufficient to instigate their development. The formation of the corner vortex 
induces a rotational effect which slowly propagates out from the end-wall. This effect in combina- 
tion with the concave shape of the surface representing the interface between the primary 
circulation cell and downstream corner eddy (see Figure 2) generates the TGL vortices. 

Figures 9 and 10 demonstrate the variation in corner vortex and TGL vortices strength and 
size due to spatial location. Figures 9 and 10 are at a plane 75mm from the downstream wall. 
The corner vortex does not penetrate to the bottom of the cavity and quite noticeable secondary 
motions are present in the centre and at the top of the cavity. The motions at the top of the 
cavity could be the vestiges of the TGL vortices convected by the dominant primary circulation 
or the fluid response to the vortex in the upper left corner of the cavity. As one would suspect, 
the strength of the TGL vortices is dependent on their proximity to the downstream wall. In 
Figures 9 and 10, which are more isolated from the downstream wall than Figures 7 and 8, the 
TGL vortices appear to be slightly larger or more fully developed, but a more quantitative analysis 
is required to verify this. 

The downstream corner eddy size, as shown in Figures 2, 4 and 5, appears to be correlated 
to whether the planes parallel to the symmetry plane fall between TGL vortices or intersect a 
TGL vortex pair. If the downstream eddy intersects a TGL vortex pair, this results in a weaker 
recirculation due to significant local spanwise motions generated by the TGL vortex pair. A less 

Figure 8. Vector field for flow in plane 35 mm upstream of downstream wall 
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Figure 9. Particle tracks for flow in  plane 75 mm upstream of downstream wall 

Figure 10. Vector field for flow in plane 75 mm upstream of downstream wall 
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well defined downstream secondary eddy results. A stronger downstream eddy exists when the 
plane containing the eddy falls between TGL vortices. Thus, local spanwise motions generated 
by TGL vortices do  modify flow structure in planes perpendicular to these motions. Additionally, 
as was noted first in the experiment and then in the simulation, the location and size of TGL 
vortices is very dynamic and possibly periodic.'* In order to determine this periodicity further 
analysis will be required. 

Figure 11. Flow in plane 5 mm from upstream wall 

Figure 12. Particle tracks for flow in plane 5mm from upstream wall 
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Figure 11 displays the streakline pattern induced by the TGL vortices at  a plane 5 mm from 
the upstream side-wall (plane PKNR in Figure 2). The similar effect for the computed fields is 
reproduced in the particle track plot of Figure 12. In Figure 11 the influence of the TGL vortices 
concentrates particles of the rheoscopic liquid (the light zones). The corresponding phenomenon 
occurs in Figure 12. Note that the line representing the interface between the primary circulation 
cell and the upstream secondary eddy is seen in Figure 12 near the bottom of the cavity. 

The final comparison is of the traditional normalized (by the belt velocity) mean velocity profile 
plot at  the symmetry plane on the appropriate centrelines (Figures 13(a), (b)). The experimental 
data points represent five-minute sample averages, whereas the computed profiles are three-minute 
sample averages begun at the 20 minute mark of the flow. Three-minute averages for the computed 
profiles were used because the running means were constant. As previously mentioned the 
influence of the TGL vortices modifies the flow structure in the symmetry plane in some periodic 
manner. In addition, the numerical no-flux boundary condition at the symmetry plane influences 
the computed velocity profiles in a manner absent in the experiment (the symmetric flow assump- 
tion requires further investigation). Therefore, we would not expect complete agreement of 
experiment and simulation. Yet, we do see the similar general shape of the profiles, both being 
drastically different to the profiles generated by two-dimensional  simulation^.'^'^ 

CONCLUSIONS 

The improvement of the global accuracy of REBUFFS by introducing a modified QUICK 
formulation coupled with an effective non-uniform grid has been sufficient to generate successful 
numerical results for the three-dimensional laminar lid-driven cavity flow. The experimentally 
observed TGL longitudinal vortices, as well as other general flow structures, have been simulated 
for the half-cavity. The total impact of the presence of the TGL vortices has not been assessed, 
but preliminary results indicate that they strongly modify the flow structure. Also, the size and 
location of the TGL vortices is time-dependent. 

The assessment of the quasi-periodic structure of the three-dimensional cavity flow will be 
the focus of one aspect of our group’s future work. Further numerical simulations of the three- 
dimensional cavity flow will include investigation of the impact of thermally unstable convection 
on the overall flow structure and studies of thermally influenced turbulent flow. 
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